visitor

Senin, 06 Mei 2013

induksi elektromagnetik



Fakultas Matematika dan Ilmu Pengetahuan Alam
Universitas Riau
Laporan Praktikum Fisika Dasar II
Semester Genap 2012/2013

Percobaan 08 :
Induksi Elektromagnetik




Lukman Arifin
1207121229

Fakultas Teknik
Teknik Kimia kelas A
Universitas Riau
Pekanbaru




Tujuan Percobaan 

            Setelah melakukan eksperimen dan menganalisis data,Anda diharapkan untuk mampu :
  1. Mengenal dan mempraktekan kaidah tangan kanan untuk menentukan arah medan magnet pada sebuah kawat yang mengalirkan listrik
  2. Menjelaskan Hukum Faraday tentang induksi dan bagaimana sebuah tegangan dapat dihasilkan
  3. Mengenal Hukum Lenz dan Permeabilitas magnet

Landasan Teori


Induksi elektromagnetik
Induksi elektromagnetik adalah peristiwa timbulnya arus listrik akibat adanya perubahan fluks magnetic. Fluks magnetic adalah banyaknya garis gaya magnet yang menembus suatu bidang.

GGL INDUKSI
Kemagnetan dan kelistrikan merupakan dua gejala alam yang prosesnya dapat dibolak-balik. Ketika H.C. Oersted membuktikan bahwa  di  sekitar  kawat  berarus  listrik  terdapat  medan  magnet (artinya listrik menimbulkan magnet), para ilmuwan mulai berpikir keterkaitan antara kelistrikan dan kemagnetan. Tahun 1821 Michael Faraday  membuktikan   bahwa   perubahan  medan  magnet   dapat menimbulkan  arus  listrik  (artinya  magnet  menimbulkan  listrik) melalui  eksperimen  yang  sangat  sederhana.  Sebuah  magnet  yang digerakkan masuk dan keluar pada kumparan dapat menghasilkan arus  listrik pada kumparan  itu. Galvanometer merupakan  alat  yang dapat digunakan untuk mengetahui ada tidaknya arus listrik yang mengalir. Ketika sebuah magnet yang digerakkan masuk dan keluar pada kumparan (seperti kegiatan di atas), jarum galvanometer menyimpang ke kanan dan ke kiri. Bergeraknya jarum galvanometer menunjukkan bahwa  magnet yang digerakkan keluar dan masuk   pada kumparan menimbulkan arus listrik. Arus listrik bisa terjadi jika pada ujung-ujung kumparan terdapat GGL (gaya gerak listrik). GGL yang terjadi di ujung-ujung kumparan dinamakan GGL induksi. Arus listrik hanya timbul pada saat  magnet  bergerak.  Jika  magnet  diam  di  dalam  kumparan,  di ujung kumparan tidak terjadi arus listrik.
1.   Penyebab Terjadinya GGL Induksi
Ketika  kutub  utara  magnet  batang  digerakkan  masuk  ke dalam kumparan,  jumlah garis gaya-gaya magnet yang  terdapat di dalam kumparan bertambah banyak. Bertambahnya   jumlah garis- garis   gaya   ini   menimbulkan   GGL   induksi   pada   ujung-ujung kumparan. GGL induksi yang ditimbulkan menyebabkan arus listrik mengalir  menggerakkan  jarum  galvanometer.  Arah  arus  induksi dapat  ditentukan  dengan  cara  memerhatikan  arah  medan  magnet yang  ditimbulkannya. Pada  saat magnet masuk,  garis  gaya  dalam kumparan bertambah. Akibatnya medan magnet hasil arus  induksi bersifat mengurangi garis gaya  itu. Dengan demikian, ujung kumparan itu merupakan kutub utara sehingga arah arus induksi
Ketika  kutub  utara  magnet  batang  digerakkan  keluar  dari dalam kumparan,  jumlah garis-garis gaya magnet yang  terdapat di dalam kumparan berkurang. Berkurangnya jumlah garis-garis gaya ini  juga  menimbulkan  GGL  induksi  pada  ujung-ujung  kumparan. GGL induksi yang ditimbulkan menyebabkan arus listrik mengalir dan menggerakkan jarum galvanometer. Sama halnya ketika magnet batang  masuk  ke  kumparan.  pada  saat  magnet  keluar  garis  gaya dalam  kumparan  berkurang.  Akibatnya  medan  magnet  hasil  arus induksi bersifat menambah garis gaya itu. Dengan demikian, ujung, kumparan itu merupakan kutub selatan, sehingga arah arus induksi .Ketika kutub utara magnet batang diam di dalam kumparan, jumlah  garis-garis  gaya  magnet  di  dalam  kumparan  tidak  terjadi perubahan (tetap). Karena jumlah garis-garis gaya tetap, maka pada ujung-ujung kumparan tidak terjadi GGL induksi. Akibatnya, tidak terjadi arus listrik dan jarum galvanometer tidak bergerak. Jadi, GGL induksi dapat terjadi pada kedua ujung kumparan jika di dalam kumparan  terjadi perubahan  jumlah garis-garis gaya magnet (fluks magnetik). GGL yang timbul akibat adanya perubahan jumlah  garis-garis  gaya  magnet  dalam  kumparan  disebut  GGL induksi.  Arus  listrik  yang  ditimbulkan  GGL  induksi  disebut  arus induksi. Peristiwa  timbulnya GGL  induksi dan arus  induksi akibat adanya perubahan  jumlah garis-garis gaya magnet disebut  induksi elektromagnetik. 
Faktor yang Memengaruhi Besar GGL Induksi Sebenarnya besar kecil GGL induksi dapat dilihat pada besar kecilnya   penyimpangan   sudut   jarum   galvanometer.   Jika   sudut penyimpangan jarum galvanometer besar, GGL induksi dan arus induksi yang dihasilkan besar. Tiga  faktor yang memengaruhi GGL induksi, yaitu : a.   kecepatan  gerakan  magnet  atau  kecepatan  perubahan  jumlah garis-garis gaya magnet (fluks magnetik), b.   jumlah lilitan, c.   medan magnet

PENERAPAN INDUKSI ELEKTROMAGNETIK

Pada induksi elektromagnetik terjadi perubahan bentuk energi gerak menjadi energi listrik. Induksi elektromagnetik digunakan pada pembangkit energi listrik. Pembangkit energi listrik yang menerapkan induksi elektromagnetik adalah generator dan dinamo. Di dalam generator dan dinamo terdapat kumparan dan magnet. Kumparan  atau  magnet  yang  berputar  menyebabkan  terjadinya perubahan jumlah garis-garis gaya magnet dalam kumparan. Perubahan  tersebut  menyebabkan  terjadinya  GGL  induksi  pada kumparan.  Energi  mekanik  yang  diberikan  generator  dan  dinamo diubah ke dalam bentuk energi gerak rotasi. Hal  itu menyebabkan GGL  induksi  dihasilkan  secara  terus-menerus  dengan  pola  yang berulang secara periodik
1.      Generator
Generator dibedakan menjadi dua, yaitu generator arus searah (DC) dan generator arus bolak-balik (AC). Baik generator AC dan generator  DC  memutar  kumparan  di  dalam  medan  magnet  tetap. Generator AC sering disebut alternator. Arus listrik yang dihasilkan berupa  arus  bolak-balik.  Ciri  generator  AC  menggunakan  cincin ganda. Generator arus DC, arus yang dihasilkan berupa arus searah. Ciri  generator  DC  menggunakan  cincin  belah  (komutator).  Jadi, generator  AC  dapat  diubah  menjadi  generator  DC  dengan  cara mengganti cincin ganda dengan sebuah komutator. Sebuah  generator  AC  kumparan  berputar   di  antara  kutub- kutub  yang  tak  sejenis  dari  dua  magnet  yang  saling  berhadapan. Kedua  kutub  magnet  akan  menimbulkan  medan  magnet.  Kedua ujung  kumparan  dihubungkan  dengan  sikat  karbon  yang  terdapat pada  setiap  cincin.  Kumparan  merupakan  bagian  generator  yang berputar  (bergerak) disebut  rotor. Magnet  tetap merupakan bagian generator   yang   tidak   bergerak   disebut   stator.   Bagaimanakah generator bekerja? Ketika kumparan sejajar dengan arah medan magnet (membentuk  sudut  0 derajat),  belum  terjadi  arus  listrik  dan  tidak  terjadi GGL induksi .  Pada  saat  kumparan  berputar perlahan-lahan,  arus  dan  GGL  beranjak  naik  sampai  kumparan membentuk sudut 90 derajat. Saat itu posisi kumparan tegak lurus dengan arah medan magnet. Pada kedudukan ini kuat arus dan GGL induksi menunjukkan nilai maksimum. Selanjutnya, putaran kumparan terus berputar, arus dan GGL makin berkurang. Ketika kumparan mem bentuk sudut 180 derajat kedudukan kumparan sejajar dengan arah medan, maka GGL dan arus menjadi nol.
Putaran kumparan berikutnya arus dan tegangan mulai naik lagi  dengan  arah  yang  berlawanan.  Pada  saat  membentuk  sudut 270 derajat, terjadi lagi kumparan berarus tegak lurus dengan arah medan magnet. Pada kedudukan kuat arus dan GGL induksi menunjukkan nilai  maksimum  lagi,  namun  arahnya  berbeda.  Putaran  kumparan selanjutnya,  arus  dan  tegangan  turun  perlahanlahan  hingga  mencapai  nol  dan  kumparan  kembali  ke  posisi  semula  hingga  memb entuk sudut 360 derajat.
2.      Dinamo
Dinamo dibedakan menjadi dua yaitu, dinamo arus searah (DC) dan dinamo arus bolak-balik (AC). Prinsip kerja dinamo sama dengan generator yaitu memutar kumparan di dalam medan magnet atau memutar magnet di dalam kumparan. Bagian dinamo yang berputar disebut rotor. Bagian dinamo yang tidak bergerak disebut stator. Perbedaan antara dinamo DC dengan dinamo AC terletak pada cincin yang digunakan. Pada dinamo arus searah menggunakan satu cincin yang dibelah menjadi dua yang disebut cincin belah (komutator). Cincin ini memungkinkan arus listrik yang dihasilkan pada rangkaian luar Dinamo berupa arus searah walaupun di dalam dinamo sendiri menghasilkan arus bolak-balik. Adapun, pada dinamo arus bolak-balik menggunakan cincin ganda (dua cincin). Alat pembangkit listrik arus bolak balik yang paling sederhana adalah dinamo sepeda. Tenaga yang digunakan untuk memutar rotor adalah roda sepeda. Jika roda berputar, kumparan atau magnet ikut berputar. Akibatnya, timbul GGL induksi pada ujung-ujung kumparan dan arus listrik mengalir. Makin cepat gerakan roda sepeda, makin cepat magnet atau kumparan berputar. Makin besar pula GGL induksi  dan arus listrik yang dihasilkan. Jika dihubungkan dengan lampu, nyala lampu makin terang. GGL induksi pada dinamo dapat diperbesar dengan cara putaran roda dipercepat, menggunakan magnet yang kuat (besar), jumlah lilitan diperbanyak, dan menggunakan inti besi lunak di dalam kumparan.
C.   TRANSFORMATOR
Di rumah mungkin kamu pernah dihadapkan persoalan tegangan listrik, ketika kamu akan menghidupkan radio yang memerlukan tegangan 6 V atau 12 V. Padahal tegangan listrik yang disediakan PLN 220 V. Bahkan generator pembangkit listrik menghasilkan tegangan listrik yang sangat tinggi mencapai hingga puluhan ribu volt. Kenyataannya sampai di rumah tegangan listrik tinggal 220 V. Bagaimanakah cara mengubah tegangan listrik? Alat yang digunakan untuk menaikkan atau menurunkan tegangan AC disebut transformator (trafo). Trafo memiliki dua terminal, yaitu terminal input dan terminal output. Terminal input terdapat pada kumparan primer. Terminal output terdapat pada kumparan sekunder. Tegangan listrik yang akan diubah dihubungkan dengan terminal input. Adapun, hasil pengubahan tegangan diperoleh pada terminal output. Prinsip kerja transformator menerapkan peristiwa induksi elektromagnetik. Jika pada kumparan primer dialiri arus AC, inti besi yang dililiti kumparan akan menjadi magnet (elektromagnet). Karena arus AC, pada elektromagnet selalu terjadi perubahan garis gaya magnet. Perubahan garis gaya tersebut akan bergeser ke kumparan sekunder. Dengan demikian, pada kumparan sekunder juga terjadi perubahan garis gaya magnet. Hal itulah yang menimbulkan GGL induksi pada kumparan sekunder. Adapun, arus induksi yang dihasilkan adalah arus AC yang besarnya sesuai dengan jumlah lilitan sekunder. 



Bagian utama transformator ada tiga, yaitu inti besi yang berlapis-lapis, kumparan primer, dan kumparan sekunder. Kumparan primer yang dihubungkan dengan PLN sebagai tegangan masukan (input) yang akan dinaikkan atau diturunkan. Kumparan sekunder dihubungkan dengan beban sebagai tegangan keluaran (output).

1. Macam-Macam Transformator
Apabila tegangan terminal output lebih besar daripada tegangan yang diubah, trafo yang digunakan berfungsi sebagai penaik tegangan. Sebaliknya apabila tegangan terminal output lebih kecil daripada tegangan yang diubah, trafo yang digunakan berfungsi sebagai penurun tegangan.  Dengan demikian, transformator (trafo) dibedakan menjadi dua, yaitu trafo step up dan trafo step down.
Trafo  step up
adalah transformator yang berfungsi untuk menaikkan tegangan AC. Trafo ini memiliki ciri-ciri:
a. jumlah lilitan primer lebih sedikit daripada jumlah lilitan sekunder,
b. tegangan primer lebih kecil daripada tegangan sekunder,
c. kuat arus primer lebih besar daripada kuat arus sekunder.
Trafo step down adalah transformator yang berfungsi untuk menurunkan  tegangan AC. Trafo ini memiliki ciri-ciri:
a. jumlah lilitan primer lebih banyak daripada jumlah lilitan sekunder,
b. tegangan primer lebih besar daripada tegangan sekunder,
c. kuat arus primer lebih kecil daripada kuat arus sekunder.
2. Transformator Ideal
Besar tegangan dan kuat arus pada trafo bergantung banyaknya lilitan. Besar tegangan sebanding dengan jumlah lilitan. Makin banyak jumlah lilitan tegangan yang dihasilkan makin besar. Hal ini berlaku untuk lilitan primer dan sekunder.
Trafo dikatakan ideal jika tidak ada energi yang hilang menjadi kalor, yaitu ketika jumlah energi yang masuk pada kumparan primer sama dengan jumlah energi yang keluar pada kumparan sekunder.


  


Alat alat yang digunakan


  1. sebuah kumparan silinder/solenoid
  2. power supply DC yang rendah tegangannya atau baterai kering
  3. kompas
  4. saklar
  5. galvanometer
  6. sebuah magnet batang
  7. 3 lembar kertas putih
  8. Kabel kabel penghubung


Analisis Data

A.    Penyimpangan Galvanometer
1.Arah simpangan jarum relative terhadap kutub positif baterai/power supply Kiri
2.  Arah simpangan setelah kutub baterai diganti ke kanan
 b.    Arus induksi



Simpangan Maksimum ( Pembacaan skala)
Arah arus
Gerak Magnet kearah koil
Kecepatan 1
5
kiri
Kecepatan 2 ( lebih cepat)
12
Kiri
Gerak Magnet menjauhi koil
Kecepatan 1
5
Kanan
Kecepatan 2 ( lebih cepat)
10
Kanan


Kesimpulan : jika magnet mendekati kea rah koil, maka arah arus ke kiri,begitu sebaliknya. Dan kecepatan yang biasa memiliki simpangan yang lebih kecil daripada kecepatan yang lebih cepat



Analisa dan Pertanyaan


Percobaan 08 :
1. Misalkan sebuah magnet batang dijatuhkan melalui lilitan kawat yang mendatar yang dihubungkan ke sebuah galvanometer,jelaskan arah simpangan jarum ketika magnet memasuki lilitan/loop tersebut. Begitu juga arahnya ketika berada ditengah loop dan ketika sudah keluar dari lilitan tersebut.
Jawab :
Jika magnet memasuki lilitan/loop arah simpangan jarumnya ke kiri,sedangkan ketika magnet berada ditengah loop maka arah simpangan jarumnya kembali kebentuk semula(0), dan jika magnet keluar dari lilitan maka arah simpangan jarumnya kekanan.
2. Kenapa tubuh anda dianggap sebagai hambatan yang besar ?
Jawab :
Karena pada dasarnya tubuh manusia merupakan penghantar yang baik. Hal ini disebabkan sebagian besar tubuh manusia merupakan cairan,dalam sel sel tubuh manusia sebenarnya juga terdapat tegangan yang sangat kecil yang berasal dari ion ion yang terdapat dalam tubuh.



Kesimpulan 

1. Induksi elektromagnetik adalah peristiwa timbulnya arus listrik akibat adanya perubahan fluks magnetic
2. Besarnya GGL induksi dipengaruhi oleh :
a. Kecepatan gerakan batang magnet
b.  Jumlah lilitan pada kumparan
3. Arah arus induksi ini sedemikian rupa sehingga menghasilkan medan magnet yang menentang medan magnet,penyebab terjadinya arus induksi tersebut dikenal dengan nama hokum Lenz
4. Jika magnet dimasukan kedalam kumparan maka arah simpangannya bergerak kearah kiri, dan sebaliknya.




Daftar Pustaka

Subagya,Hari.2007. Sains Fisika 3. Jakarta : Bumi Aksara
Karengan,Marten.2007.Fisika SMA 3 . Cimahi : Erlangga
Wikipedia.com/induksi magnetic
induksi-elektromagnetik pnrapan.html
 

 


  

Tidak ada komentar:

Posting Komentar